Admissibility and minimaxity of Bayes estimators for a normal mean matrix
نویسندگان
چکیده
منابع مشابه
Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family
Abstract: We give a sufficient condition for admissibility of generalized Bayes estimators of the location vector of spherically symmetric distribution under squared error loss. Compared to the known results for the multivariate normal case, our sufficient condition is very tight and is close to being a necessary condition. In particular we establish the admissibility of generalized Bayes estim...
متن کاملOn the Bayesness, minimaxity and admissibility of point estimators of allelic frequencies.
In this paper, decision theory was used to derive Bayes and minimax decision rules to estimate allelic frequencies and to explore their admissibility. Decision rules with uniformly smallest risk usually do not exist and one approach to solve this problem is to use the Bayes principle and the minimax principle to find decision rules satisfying some general optimality criterion based on their ris...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملEmpirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations
The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...
متن کاملRate Minimaxity of the Lasso and Dantzig Estimators
We consider the estimation of regression coefficients in a high-dimensional linear model. A lower bound of the minimax `q risk is provided for regression coefficients in `r balls, along with a minimax lower bound for the tail of the `q loss. Under certain conditions on the design matrix and penalty level, we prove that these minimax convergence rates are attained by both the Lasso and Dantzig e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2008
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2008.02.012